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ABSTRACT
Acceptance sampling plans are essential in industries like manufacturing as they aid
in making decisions on whether to accept or reject a lot, depending on samples of
the population. The reliability single sampling plan is typically used for estimating
time characteristics and optimizing sample size when reliability is a critical quality
factor. This article implements a reliability sampling plan using the implementation
of bivariate Poisson distribution and lifetime distribution. In appropriate circum-
stances, the bivariate Poisson distribution may be utilized as a basis for identifying
items with defects, and lifetime distributions will be used to determine the defec-
tiveness. In the case of consumer risk, the minimum sample size is needed to attain
the specified life percentile. An acceptable lot’s expected percentile time and operat-
ing characteristic values are given. Thus, this paper is concerned with developing a
new structure and modus operandi for estimating percentiles using bivariate Poisson
distribution with its application in one-shot syringes data quality management.

KEYWORDS
Bivariate Poisson distribution; minimum sample size; operating characteristic
function; producers risk; consumers risk; percentile time.

1. Introduction

Acceptance sampling plan (ASP) was developed by Dodge and Romig in the early
1930s and is now an essential part of statistical quality control. A random sample
should be selected from the lot, and the lot’s disposal should be decided based upon the
information produced from the sample inspection. In general, the decision is whether
to accept or reject the lot. This procedure is referred to as Lot Acceptance Sampling or
simply Acceptance Sampling, and it is frequently utilized in industrial quality control
throughout the manufacturing process. Graves et al. (2000) illustrated how acceptance
sampling can improve system reliability. Sampling inspection counts the number of fail-
ures in a random sample of the population to assess if the population is approved or
rejected. Montgomery (2013) stated that the variable sampling makes use of ongoing
measurements of a system’s quality parameters, including its mass, length, or failure
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time. As part of attribute sampling, components must be categorized as either defec-
tive or non-defective. Variables are associated with the measurement mean, whereas
characteristics are relevant to the fraction of faulty systems. An acceptance reliability
sampling plan determines whether to reject or accept the appropriate lot based on the
lifetime of the items found on tests as well as the number of failures identified within
a pre-specified testing time, taking into consideration for both the producers and the
consumers risk. Epstein (1954), Sobel and Tischendorf (1959), Goode and Kao (1961),
Gupta (1962), Fertig and Mann (1980), Kantam and Rosaiah (1998), Kantam et al.
(2001), Baklizi (2003), Wu and Tsai (2005), Rosaiah and Kantam (2005), and Tsai
and Wu (2006) developed acceptance sampling plans based on truncated life tests.

A common design for ASP is one that uses the population mean under truncated
life tests. These ASPs might not, however, meet the engineering requirements of the
particular strength percentile. Regarding the functionality of a disclosed lower per-
centile, many items with a lower percentile that falls short of customer criteria may
be allowed by the ASP on the basis of overall mean. Moreover, small percentiles of
interest may change significantly downward in response to a slight fall in the mean
and a concurrent slight rise in variability. This implies that many goods could be ac-
cepted with only a slight drop on an average life after the evaluation. However, the
products material strengths have greatly declined and might not live up to consumer
expectations. In life testing applications, engineers therefore focus more on the lifetime
percentiles compared to average life. For truncated life tests, acceptance sampling us-
ing percentiles was established by Balakrishnan et al. (2007), Lio et al. (2009), Rao and
Kantam (2010), Srinivasa Rao and Kantam (2013), Rao and Naidu (2014), Pradeepa
Veerakumari and Ponneeswari (2016, 2017), and Kumarasamy and Thottathil (2022).
Percentiles are used to show additional details regarding the life distribution as the
average life. Through the use of ERD percentiles, the Reliability Acceptance Single
Sampling Plan (RASSP) describes the application of bivariate Poisson distribution
(BPD) in ASPs. The operating characteristic (OC) curves, some pertinent tables, and
the suggested sampling plans are provided in the section Illustrative Example for the
ERD with a truncated life test. The conclusion section provides the key findings and
insights.

2. Significance of Acceptance Sampling Plan procedures in One-Shot
devices

Acceptance sampling is a statistical technique for one-shot devices that estimates a
population attribute from a sample in order to forecast the probability of success or
dependability. A one-shot device is defined as equipment, and it can be used once
in its lifetime. Such devices are retained in maintenance until they are inspected for
reliability and are also destructive in nature at the time of inspection. When devices are
kept in storage for an extended period of time, they eventually fail. Sampling inspection
is very appropriate for preventing device destruction since destructive testing makes
the manufacturing costs of the devices wastable, and it is not desirable to do a thorough
inspection. One-shot devices are unknown in their operational condition until they are
tested. The device becomes useless after usage. One can only determine whether the
failure time occurs before or after the inspection time because the one-shot device is
destroyed after usage.

Many things that we use every day are classified as non-repairable, including sy-
ringes, satellites, electrical lights, weapons, and non-biodegradable batteries. These
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products are sometimes referred to as instantaneous-duty goods or one-shot devices.
They might be referred to as use and throw devices. The Coalition for Safe Com-
munity Needle Disposal collected data indicating that the total amount of syringes
utilized by households each year is estimated to be more than 7.5 billion, and it is
increasing. The automated inspection device serves to examine the product regarding
particulates and cosmetic defects, including accurate plunger placement. Balakrishnan
et al. (2021), Zhao and Yun (2020), Vo et al. (2016), and Challener (2019) developed
articles related to one-shot devices and also one-shot syringes.

3. Glossary of notations

n - Sample size
c1 - Acceptance number for the inspection based on examining the quality when there
are visible flaws when opening the syringe
c2 - Acceptance number for the inspection based on examining the quality when the
injection force of the syringe is high
d1, d2 - Number of defectives based on examining the two quality characteristics
p - Proportion defective
tq - Actual qth percentile
t0q - Specified qth percentile

δ - t
tq

δ0 - t
t0q

4. Implication of Reliability Acceptance Single Sampling Plan through
percentiles of ERD (RASSP)

An inspection process called ASSP helps make decisions on whether or not to accept
or just reject a particular lot. The parameter is considered to follow a bivariate Poisson
distribution with a parameter since larger lots are taken and success and failure are
experienced frequently. The following assumptions apply to the development of ASP
using ERD percentiles:

(1) The proposed single sample plan approach is assumed to follow a bivariate Pois-
son distribution.

(2) The failure probability observed during a particular time t is denoted by p =
F (t; δ0)

(3) Assume that the acceptance number is c1, c2. We accept an entire lot if, at the
appropriate time, there are fewer failures than c.

F (t; δ) ≤ F (t; δ0)⇔ tq ≥ t0q (1)

4.1. Bivariate Poisson distribution in Framework

Campbell (1934) and Aitken (1936) were the first to discuss the BPD. M’Kendrick
(1926) is credited as the most remarkable evolution of the BPD, having predicted
many contemporary concepts. It was revived by Irwin (1963), who also provided a very
good discussion. The most used model for bivariate counts is the bivariate Poisson.
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Holgate (1964) proposed it, and Johanson Fand Kotz (1969) delivered it. The primary
source of the BPD found in the literature is Campbell (1934). The work of Holgate
(1964) and Teicher (1954), which is fundamentally based on the work of Campbell
(1934), appears to be the only one that takes into consideration difficult examples
of multivariate Poisson distributions. The BPD can be produced as a limiting form
of the bivariate binomial distribution, as demonstrated by Hamdan and Al-Bayyati
(1969). Lakshminarayana et al. (1999) developed the bivariate Poisson distribution
and studied its distributional characteristics. Campbell (1934) defines the distribution
as the limit of a bivariate binomial distribution using a probability generating function
(PGF).

π(t1, t2) = [1 + p1+(t1 − 1) + p+1(t2 − 1) + p11(t1 − 1)(t2 − 1)]n (2)

Now let λ1, λ2, and λ1 be positive constants with respect to n. Put

p1+ = λ1

n , p+1 = λ2

n , p11 = λ11

n

and

π(t1, t2) = [1 +
λ1

n
(t1 − 1) +

λ2

n
(t2 − 1) +

λ11

n
(t1 − 1)(t2 − 1)]n (3)

Applying limits as n⇒∞, we have

π(t1, t2) = exp(λ1(t1 − 1) + λ2(t2 − 1) + λ11(t1 − 1)(t2 − 1)) (4)

With the parameters λ1, λ2, and λ11, the random variables (X,Y ) are considered to
have BPD. Assume that W1,W2, and W3 are independent Poisson random variables
with λ1, λ2, and λ3 as their respective parameters. Assume that X = W1 + W2 and
Y = W2+W3. The combination of random variables (X,Y ) having probability function
f(x, y) possesses an E[tX1 t

Y
2 ] PGF. We will represent PGF by π(t1, t2) and which can

be expressed as

π(t1, t2) = exp(λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1t2 − 1)) (5)

which is derived from equation (4). The marginal generating functions are easily ob-
tained from the joint PGF (5).

πi(t) = exp[(λ1 + λ3)(t− 1)], i = 1, 2 (6)

The one way of writing the probability mass function (PMF) of BPD is provided
by Holgate (1964) in (6) as follows:

f(x, y) =
e−λ1λx1
x!

e−λ2λy2
y!

e−λ3

min(x,y)∑
i=0

(
x

i

)(
y

i

)
i!

{
λ3

λ1λ2

}i
(7)

The trivariate reduction approach determines the probability of the occurrence
{X = r, Y = s}. This occurrence is similar to the union of mutually exclusive events
{W1 = r − i,W2 = s− i,W3 = i} for i = 0, 1, . . . ,min(r, s). The bivariate distribution
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accommodates the dependency of two random variables. Each of the random variables
follows a Poisson distribution, whereby

E(X) = V (X) = λ1 + λ3

and

E(X) = V (X) = λ1 + λ3

Furthermore, cov(X,Y ) = λ3, indicating a measure of dependency within the variables
that are selected at random. If λ3 = 0, then both variables are actually independent,
and the BPD is the same as their product, which has two independent Poisson distri-
butions.

f(x, y) =
e−λ1λx1
x!

e−λ2λy2
y!

(8)

Demonstrating that in this instance, X ∼ P (λ1) and Y ∼ P (λ2), independent of one
another.

4.2. Exponentiated Rayleigh Distribution

In response to an issue in the field of acoustics, Rayleigh (1880) first developed the
Rayleigh distribution, which has been utilized as a lifetime distribution in reliability
for a number of years. A specific instance of the Weibull distribution, the Rayleigh
distribution finds extensive use in a variety of fields, including electro-vacuum de-
vice life testing Polovko (1968) and communication engineering Dyer and Whisenand
(1973a, 1973b). The Rayleigh distribution’s probability density function (PDF) and
cumulative distribution function (CDF) are given by

f(t : τ) =
t

τ2
e−

1

2( tτ )
2

; t > 0, τ > 0 (9)

and

F (t, τ) = 1− e−
1

2
( t
τ

)2 , t > 0, τ > 0 (10)

The failure rate of the Rayleigh distribution is a crucial feature that increases lin-
early with time. Because of this characteristic, it’s a good model to use for parts that
might not have any manufacturing flaws yet age quickly.

A model known as the exponentiated distribution was presented by Gupta (1998)
for analyzing time of failure using F ∗(t) = [F (t)]θ, where θ represents the positive real
value generated from Lehman alternatives and F (t) is the baseline distribution func-
tion. According to Abdullah (2015), a CDF F(.) that has a parameter α (a positive
real integer) added to it through exponentiation yields a CDF known as the Expo-
nentiated distribution (ED). The CDF of the exponentiated distribution is expressed
below.

G(x) = G(X; θ) = [F (X;β)]α ≡ [F (X)]α (11)
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An alternative estimator for the generalized Rayleigh distribution was derived by
Kundu and Raqab (2005). Additionally, the Rayleigh Distribution’s distribution func-
tion is provided by

F (t, τ) = 1− e−
1

2
( t
τ

)2 , t > 0,
1

τ
> 0 (12)

Consequently, the ERDs CDF is provided by

F (t, τ, θ) = [1− e−
1

2
( t
τ

)2 ]θ, t > 0,
1

τ
> 0, θ > 0 (13)

where the scale parameter is represented by τ and the shape parameter is represented
by θ. Thus, the ERD’s PDF could be expressed with

f(t, τ, θ) =
d

dt
[F (t, τ, θ)] =

d

dt

[
1− e−

1

2
( t
τ

)2
]θ
, t > 0, τ > 0, θ > 0 (14)

f(t, τ, θ) = θ
[
1− e−

1

2
( t
τ

)2
]θ−1

[
t

τ2
e−

1

2
( t
τ

)2
]
, t > 0, τ > 0, θ > 0 (15)

The probability of failure within short periods of time is known as the hazard
function. The hazard function shows an instantaneous failure rate at time t, assuming
that the product never fails prior to t. The ratio of the PDF to the survival function,
which is sometimes referred to as the hazard rate, failure rate, or force of mortality.
And it is presented by,

h(t) =
f(t)

1− F (t)
(16)

Thus, for ERD, the hazard function is

h(t) =
θ[1− e−

1

2
( t
τ

)2 ]θ−1[ tτ2 e
− 1

2
( t
τ

)2 ]

1− [1− e−
1

2
( t
τ

)2 ]θ
(17)

4.3. Assumptions

We consider the following assumption:

There are N separate one-shot syringes in storage. The duration of storage of the
syringe is distributed according to a bivariate Poisson model. Failures of one-shot
devices can only be found by destructive inspection on a regular basis. Out of N
systems, a random selection is made for inspection. Every inspection has a set sample
size. The time needed for replacement and inspection is insignificant.
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4.4. Singe Sampling Plan

(1) Choose a randomized sample with size of n units in the lot and examine each of
the units for conformance with the provided attribute requirements.

(2) Count the number of defectives d1 in the inspection when there are visible flaws
when opening the syringe and count the number of defectives d2 in the inspection
when the injection force of the syringe is high.

(3) If d1 ≤ c1 and d2 ≤ c2, accept all of the lot; if not, reject it.

4.5. Percentile Estimator

The term percentile is used to express the way a score relates to various scores within
a similar set. A set of sorted data is divided into hundreds by percentiles. Any distri-
butions percentile can be determined by

P (T ≤ tq) = q (18)

tq = τ

√
−2ln(1− q

1

θ ) (19)

Let

η =

√
−2ln(1− q

1

θ ) (20)

τ =
tq
η

The CDF of the ERD is given by equation (13) when the scale parameter (τ) is
substituted.

F (t) =
[
1− e−

1

2η2
( t

tq
)2
]θ

; t > 0, θ > 0 (21)

Letting δ = t
tq

F (t; τ, θ) = [1− e−
1

2
(ηδ)2 ]θ (22)

Considering the partial derivative in terms of δ provides

∂F (t; δ)

∂δ
= θη[1− e−

1

2
(ηδ)2 ]θ−1[e−

1

2
(ηδ)2 ]

Since ∂F (t;δ)
∂δ > 0, F (t; δ) is an increasing function of δ.
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4.6. Minimum Sample Size

The proposed sampling plan is defined by (n, c1, c2, t/t
0
q) for a specified P ∗. In this

case, the lots are large enough to allow for the use of the BPD. The task is to find
the least positive number, n, necessary to assert that tq > t0q for the given values of

P ∗(0 < P ∗ < 1), t0q and c1, c2.

c1∑
i=0

e−npnpi

i!
.

c2∑
i=0

e−npnpi

i!
≤ 1− P ∗ (23)

p = F (t; δ0), which solely depends on δ0 = tt0q , is the probability of failure at time t

given the specified qth percentile lifetime t0q . As ∂F (t, δ)/∂δ > 0, F (t; δ) is a function
of δ that does not decrease. Since ∂F (t, δ)/∂δ > 0. Consequently, we have

F (t; δ) ≤ F (t; δ0)⇔ δ ≥ δ0 (24)

Any given q, tt0q , P
∗ can provide the smallest sample n meeting the inequali-

ties. Tables 1 and 4 show only the results of small sample size for q=0.1, tt0q=
0.7,0.9,1.0,1.5,2.0,2.5,3.0,3.5, P ∗= 0.75,0.90,0.95,0.99, c1, c2 = 0,1,2,3,4,5,6,7,8,9,10.

4.7. Operating Characteristic Function

The acceptance sampling strategy can be described, and its flaws can be found with
the help of the OC function. Following plan preparation, the OC function serves as
an effective arbiter for the manufacturer and the client, evaluating performance and
contrasting it with other sampling plans. The possibility of a lot can be accepted with
a specific acceptance sampling strategy if the batch or process meets a specific quality
standard, known as a probability of acceptance, or Pa(p). The curve of OC evaluates
Pa(p) with possible amounts for the proportion defective.The OC function is in terms
of a single sampling plan of inspection based on examining the quality when there are
visible flaws when opening the syringe.

Pa1
(p) = P (d1 ≤ c1) =

c1∑
i=0

e−npnpi

i!
(25)

The OC function is in terms of a single sampling plan of inspection based on exam-
ining the quality when the injection force of the syringe is high.

Pa2
(p) = P (d2 ≤ c2) =

c2∑
i=0

e−npnpi

i!
(26)

The sampling plan’s operating characteristic function provides the probability of
accepting the lot Pa(p) based on the BPD, which is given by

Pa(p) = Pa1
(p) ∗ Pa2

(p)
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Pa(p) =

c1∑
i=0

e−npnpi

i!
.

c2∑
i=0

e−npnpi

i!
(27)

Equation (24) can be used to calculate the acceptance probability for the values of
n,c1, c2, and p. During the truncated life test, the ASP for percentiles must meet
the minimal sample size n for the provided acceptance numbers c1 and c2 to ensure
consumer risk does not exceed more than 1 − P ∗. A bad lot occurs when the spec-
ified percentile, t0q , is greater than the true 100 qth percentile, tq. Consequently, the
probability P ∗ represents a confidence level since it is at least equal to the possibility
of rejecting a bad lot with tq > t0q . Thus, the proposed ASP for a given P ∗ can be

represented by (n, c1, c2, t/t
0
q).

4.8. Producers Risk

The likelihood of rejecting a lot when tq > t0q is known as the producers risk. The
purpose is to know the value of dq for a certain producer risk, lets say, such that if a
sampling plan (n, c1, c2, tt

0
q) is established at a specific confidence level P ∗, we can be

sure the producers risk is less than or equal to α. As a result, in considering (27), the
least number dq must be determined.

c1∑
i=0

e−npnpi

i!
.

c2∑
i=0

e−npnpi

i!
≥ 1− α (28)

where p = F ( tt0q
1
dq

), dq = tq
t0q

.

4.9. Design of the table

(1) Determine η’s value when θ=2 and then q=0.1.
(2) Fix the evaluated η, c1 = c2 = 2 and t/tq = 0.7, 0.9, 1, 1.5, 2, 2.5, 3, 3.5 and 4.

(3) Determine the minimum value for n that satisfies
∑c1

i=0
e−npnpi

i! .
∑c2

i=0
e−npnpi

i! ≤
1− P ∗, where P ∗ represents the probability of rejecting a bad lot.

(4) Determine a ratio of d0.1 for the obtained n value so that∑c1
i=0

e−npnpi

i! .
∑c2

i=0
e−npnpi

i! ≥ 1− α, where, α=0.05, p = F ( tt0q
1
dq

), dq = tq
t0q

.

5. Illustrative Example

The primary attributes of one-shot syringe inspection are as follows: It’s not unex-
pected that there are several chances for these intricate systems to fall short of quality
standards, considering the variety of tests that need to be performed on both empty
and loaded syringes.

• Failures with filled syringes are contingent upon the design of a medicinal com-
ponent.
• Some mistakes involve problems pertaining to the patient. It is possible for pa-

tients to experience difficulties with the combined product (consumers handling),
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and these problems ought to be regarded as testing failures. Examples include ex-
cessive injection forces, lengthy injection durations, and general syringe gripping
problems.
• For pre-filled syringes, tests are also conducted on the delivered and retention

volumes. Since it has an impact on filling capacity along with packing tolerance
throughout manufacturing, the retained volume is significant.
• Applying insufficient silicone oil to the syringe’s barrel is a major reason why

functional tests fail. Inadequate oil application can cause the plunger to clatter
or stop moving through the barrel and can also make it impossible to get the
plunger moving at all. As a result, this concludes using a reduced inspection plan
with a small sample population, thereby increasing the customer’s beta risk.

In the acceptance sampling plan, we check two different quality characteristics: Q1 =
examining the quality when there are visible flaws. Q2 = examining the quality when
the injection force of the syringe is high; the two attributes of quality are independent.
The acceptance probability of the sample with size n = 11 and acceptance number
c1 = 2 is based on the visible flaws and the acceptance probability of the sample
with size n = 11 and acceptance number c2 = 2 is based on the high injection force.
Considering the ERD of the lifetime distribution, the ratio tt0q = 1.5 should have re-

sulted from the experimenters aim to ascertain the actual unidentified 10th percentile
lifetime value for one-shot syringe storage, which was intended to be 2 years, and the
termination of the life test at 3 years. Therefore, the necessary sample size n, which
can be obtained from Table 1, should be at least 11 for an acceptance number of
c1 = 2 and c2 = 2 and the confidence level P ∗= 0.90. As a result, in this instance,
(n, c1, c2, tt

0
q) = (11,2,2,1.5) should be the ASP from truncated life tests for the ERD

10th percentile. From Table 3, the OC values under ERD for the acceptance sam-
pling plan (n, c1, c2, tt

0
q) = (11,2,2,1.5) and confidence level P ∗=0.90 are as follows:

t0.1/t
0
0.1 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

L(p) 0.0013 0.0880 0.4746 0.8108 0.9434 0.9834 0.9949 0.9983 0.9994

This demonstrates that when the true and specified 10th percentiles are the same
(t0.1/t

0
0.1 = 1), the producers risk approximates 0.912(= 1-0.0880). If the actual 10th

percentile exceeds or equals 2.75 times the specified 10th percentile, the producers risk
approaches zero.

Table 2 provides experimenters with the true 10th percentile estimate with the level
of confidence 95% on various acceptance numbers and t/t00.1 values in accepted lots. In
the above case, d0.1 should be 1.7733 with c1, c2 = 2, t/t0.1 = 1.5 and P ∗ = 0.90. This
implies that the products 10th percentile life is required to be 1.7733 times greater
than the minimum required lifetime in order to be accepted under the aforementioned
ASP with a probability of at least 0.95. As an alternative, lets consider that consumers
wish to reject a bad lot at a probability of P ∗= 0.95 as well as the products possessing
an ERD. So, whatever the actual 10th percentile life for these products remains, the
producer’s risk is 0.05 when the ASP depends upon an acceptance number c1, c2 = 2
and t/t0.1=1. Table 2 shows that the entry for P ∗ = 0.95, c1, c2 = 2 and t/t0.1=1 is
d0.1= 1.7099. Consequently, its essential that the manufacturers product be accepted
with a probability of 0.95 with the aforementioned ASP, it must have a 10th percentile
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life that is at least 1.7099 times the specified 10th percentile. According to Table 1,
the acceptance sampling plan (n, c1, c2, tt

0
q) = (42, 2, 2, 1) requires n = 42 products to

be tested.

Similarly, the necessary sample size n, which can be obtained from Table 4,
should be at least 9 for an acceptance number of c1 = 1 and c2 = 2 and
the confidence level P ∗= 0.90. As a result, in this instance, (n, c1, c2, tt

0
q) =

(9,1,2,1.5) should be the ASP from truncated life tests for the ERD 10th per-
centile. From Table 4, the OC values under ERD for the acceptance sampling
plan (n, c1, c2, tt

0
q) = (9,1,2,1.5) and confidence level P ∗ = 0.90 are as follows:

t0.1/t
0
0.1 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

L(p) 0.0023 0.0871 0.4115 0.7239 0.8838 0.9507 0.9781 0.9897 0.9949

This demonstrates that when true and specified 10th percentiles are the same
(t0.1/t

0
0.1 = 1), producers risk approximates 0.9129(= 1-0.0871). If the actual 10th per-

centile exceeds or equals to 2.75 times the specified 10th percentile, the producers risk
approaches zero. Table 2 provides experimenters with the true 10th percentile estimate
with the level of confidence 95% on various acceptance number and t/t00.1 values in
accepted lots. In the above case, d0.1 should be 1.9933 with c1 = 1, c2 = 2, t/t0.1 = 1.5
and P ∗ = 0.90. This implies that the products 10th percentile life is required to be
1.9933 times greater than the minimum required lifetime in order to be accepted un-
der the aforementioned ASP with a probability of at least 0.95. As an alternative,
lets consider that consumers wish to reject a bad lot at a probability of P ∗ = 0.95 as
well as the products possess an ERD. So, whatever the actual 10th percentile life for
these products remain thus the producer’s risk is 0.05 when the ASP depends upon an
acceptance number c1 = 1, c2 = 2 and t/t0.1 = 1. The Table 5 shows that the entry for
P ∗ = 0.95, c1 = 1, c2 = 2 and t/t0.1 = 1 is d0.1 = 1.9023. Consequently, its essential
that manufacturers product be accepted with a probability of 0.95 with the aforemen-
tioned ASP, it must have a 10th percentile life that is at least 1.9023 times the specified
10th percentile. According to Table 4, the acceptance sampling plan (n, c1, c2, tt

0
q) =

(34,1,2,1) requires n = 34 products to be tested.

From Table 7, the OC values under ERD for the acceptance sampling
plan (n, c1, c2, tt

0
q) = (13,2,3,1.5) and confidence level P ∗=0.90 are as follows:

t0.1/t
0
0.1 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

L(p) 0.0006 0.0748 0.4731 0.8202 0.9488 0.9854 0.9956 0.9986 0.9995

From Table 8, the OC values under ERD for the acceptance sampling plan
(n, c1, c2, tt

0
q) = (16,3,4,1.5) and confidence level P ∗ = 0.90 are as follows:

t0.1/t
0
0.1 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

L(p) 0.0004 0.0889 0.5738 0.8994 0.9810 0.9964 0.9993 0.9998 1.000
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Table 1. Minimum sample sizes required to prove that the 10th percentile exceeds the values provided, t00.1,

with the probability P ∗ and same acceptance numbers c1, c2 using the bivariate Poisson approximation.

P ∗ c1, c2
t/t0.1

0.7 0.9 1 1.5 2 2.5 3 3.5 4
0.75 1 59 24 17 6 3 3 2 2 2
0.75 2 93 39 27 9 5 4 3 3 3
0.75 3 128 53 37 12 7 5 4 4 4
0.75 4 162 67 47 15 8 6 5 5 5
0.75 5 197 81 57 18 10 7 7 6 6
0.75 6 231 95 67 21 11 9 8 7 7
0.75 7 266 110 77 24 13 10 8 8 8
0.75 8 301 124 87 27 15 11 10 9 9
0.75 9 335 138 97 30 16 12 11 10 10
0.75 10 370 152 107 33 18 13 12 11 11
0.9 1 82 34 24 8 4 3 3 3 3
0.9 2 123 51 36 11 6 5 4 4 4
0.9 3 162 67 47 15 8 6 5 5 5
0.9 4 200 83 58 18 10 8 7 6 6
0.9 5 239 98 69 21 12 9 8 8 7
0.9 6 277 112 80 25 14 10 9 9 9
0.9 7 314 130 91 28 15 12 10 10 10
0.9 8 352 145 102 31 17 13 11 11 11
0.9 9 389 160 113 34 19 14 12 12 12
0.9 10 427 176 124 38 21 15 14 13 13
0.95 1 99 41 29 9 5 4 4 3 3
0.95 2 143 59 42 13 7 5 5 5 5
0.95 3 185 76 54 17 9 7 6 6 6
0.95 4 226 93 66 20 11 8 7 7 7
0.95 5 266 110 77 24 13 10 9 8 8
0.95 6 306 128 89 27 15 11 10 9 9
0.95 7 345 142 100 31 17 13 11 11 11
0.95 8 385 158 111 34 19 14 12 12 12
0.95 9 424 175 123 37 21 15 14 13 13
0.95 10 462 190 134 41 22 17 15 14 14
0.99 1 135 56 39 12 7 5 5 4 4
0.99 2 185 76 54 17 9 7 6 6 6
0.99 3 232 96 67 21 11 9 8 7 7
0.99 4 277 114 80 25 14 10 9 9 9
0.99 5 322 133 93 29 16 12 10 10 10
0.99 6 365 150 106 32 18 13 12 11 11
0.99 7 407 168 118 36 20 15 13 12 12
0.99 8 450 186 130 40 22 16 14 14 14
0.99 9 492 203 143 43 24 18 16 15 15
0.99 10 534 220 155 47 26 19 17 16 16
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Table 2. Lot acceptance ratio d0.1 for the ERD with a 0.05 producer’s risk.

P ∗ c1, c2
t/t0.1

0.7 0.9 1 1.5 2 2.5 3 3.5 4
0.75 1 1.6729 1.7009 1.7250 1.9464 2.1269 2.6595 2.8211 3.2913 3.7615
0.75 2 1.4771 1.5097 1.5191 1.6734 1.8681 2.1749 2.3709 2.7660 3.1612
0.75 3 1.3853 1.4085 1.4189 1.5417 1.7369 1.9385 2.1494 2.5040 2.8617
0.75 4 1.3275 1.3475 1.3582 1.4622 1.5911 1.7959 2.0108 2.3459 2.6811
0.75 5 1.2886 1.3045 1.3168 1.4081 1.5473 1.6967 2.0332 2.2332 2.5523
0.75 6 1.2602 1.2747 1.2851 1.3683 1.4672 1.7007 1.9479 2.1487 2.4557
0.75 7 1.2393 1.2547 1.2621 1.3378 1.4472 1.6355 1.7830 2.0802 2.3797
0.75 8 1.2226 1.2360 1.2435 1.3134 1.4302 1.5831 1.8235 2.0266 2.3161
0.75 9 1.2078 1.2204 1.2282 1.2923 1.3820 1.5396 1.7782 1.9819 2.2650
0.75 10 1.1963 1.2074 1.2153 1.2754 1.3743 1.5030 1.7394 1.9467 2.2247
0.9 1 1.8203 1.8630 1.8888 2.1080 2.3148 2.6586 3.1914 3.7233 4.2552
0.9 2 1.5880 1.6208 1.6411 1.7733 1.9762 2.3351 2.6099 3.0449 3.4799
0.9 3 1.4731 1.4999 1.5145 1.6468 1.8136 2.0634 2.3261 2.7138 3.1015
0.9 4 1.4029 1.4278 1.4391 1.5451 1.7143 1.9882 2.2769 2.5143 2.8702
0.9 5 1.3573 1.3756 1.3884 1.4766 1.6477 1.8623 2.1401 2.4967 2.7147
0.9 6 1.3230 1.3345 1.3513 1.4449 1.5966 1.7702 2.0409 2.3788 2.7186
0.9 7 1.2956 1.3145 1.3234 1.4046 1.5234 1.7556 1.9626 2.2872 2.6139
0.9 8 1.2739 1.2910 1.3011 1.3727 1.4967 16929 1.8995 2.2161 2.5327
0.9 9 1.2565 1.2709 1.2829 1.3467 1.4745 1.6413 1.8476 2.1551 2.4630
0.9 10 1.2428 1.2571 1.2667 1.3362 1.4557 1.5976 1.8624 2.1036 2.4041
0.95 1 1.9101 1.9557 1.9850 2.1772 2.4655 2.8936 3.4724 3.7221 4.2538
0.95 2 1.6509 1.6843 1.7099 1.8597 2.0704 2.3351 2.8040 3.2713 3.7386
0.95 3 1.5247 1.5511 1.5723 1.7081 1.8813 2.1711 2.4761 2.8888 3.3014
0.95 4 1.4484 1.4721 1.4906 1.5945 1.7681 1.9888 2.2769 2.6564 3.0359
0.95 5 1.3959 1.4191 1.4309 1.5375 1.6908 1.9335 2.2348 2.4967 2.8534
0.95 6 1.3580 1.3837 1.3918 1.4794 1.6344 1.8334 2.1232 2.3810 2.7212
0.95 7 1.3282 1.3465 1.3586 1.4496 1.5910 1.8085 2.0378 2.3761 2.7155
0.95 8 1.3055 1.3217 1.3322 1.4130 1.5564 1.7418 1.9683 2.2948 2.6226
0.95 9 1.2863 1.3035 1.3137 1.3832 1.5281 1.6867 1.9686 2.2294 2.5479
0.95 10 1.2687 1.2847 1.2955 1.3690 1.4806 1.6799 1.9171 2.1728 2.4832
0.99 1 2.0674 2.1200 2.1446 2.3541 2.7057 3.0848 3.7018 4.0482 4.6266
0.99 2 1.7640 1.8000 1.8277 2.0044 2.2301 2.5907 2.9643 3.4614 3.9559
0.99 3 1.6168 1.6501 1.6660 1.8148 2.0012 2.3493 2.7215 3.0396 3.4738
0.99 4 1.5266 1.5543 1.5704 1.7023 1.9075 2.1424 2.4829 2.8984 3.3124
0.99 5 1.4673 1.4933 1.5065 1.6265 1.8082 2.0578 2.3202 2.7069 3.0936
0.99 6 1.4222 1.4443 1.4604 1.5573 1.7359 1.9455 2.2698 2.5663 2.9330
0.99 7 1.3871 1.4092 1.4220 1.5174 1.6805 1.9041 2.1702 2.4578 2.8082
0.99 8 1.3603 1.3816 1.3918 1.4856 1.6364 1.8303 2.0902 2.4383 2.7866
0.99 9 1.3377 1.3574 1.3699 1.4495 1.6004 1.8072 2.0750 2.3609 2.6982
0.99 10 1.3191 1.3372 1.3492 1.4288 1.5704 1.7533 2.0159 2.2961 2.6241
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Table 3. OC values based on sampling plan (n, c1 = c2 = 2, t/t0.1) with provided P ∗ using ERD.

P* n t/t00.1
t0.1/t

0
0.1

2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75
0.75 93 0.7 0.9999 0.9998 0.9995 0.9979 0.9911 0.9568 0.7832 0.2471 0.0004
0.75 39 0.9 0.9999 0.9998 0.9992 0.9972 0.9884 0.9467 0.7552 0.2344 0.0010
0.75 27 1 0.9999 0.9997 0.9992 0.9969 0.9874 0.9436 0.7507 0.2437 0.0018
0.75 9 1.5 0.9997 0.9990 0.9971 0.9904 0.9660 0.8782 0.6139 0.1841 0.0079
0.75 5 2 0.9987 0.9965 0.9901 0.9714 0.9166 0.7710 0.4820 0.1693 0.0364
0.75 4 2.5 0.9934 0.9842 0.9615 0.9068 0.7868 0.5730 0.3121 0.1305 0.0654
0.9 123 0.7 0.9999 0.9996 0.9988 0.9955 0.9810 0.9138 0.6326 0.0969 0.0000
0.9 51 0.9 0.9998 0.9995 0.9984 0.9941 0.9762 0.8978 0.6009 0.0936 0.0000
0.9 36 1 0.9998 0.9994 0.9981 0.9931 0.9728 0.8874 0.5819 0.0917 0.0000
0.9 11 1.5 0.9994 0.9983 0.9949 0.9834 0.9434 0.8108 0.4746 0.0880 0.0013
0.9 6 2 0.9977 0.9941 0.9838 0.9543 0.8724 0.6754 0.3483 0.0851 0.0115
0.9 5 2.5 0.9878 0.9714 0.9325 0.8449 0.6720 0.4128 0.1693 0.0492 0.0189
0.95 143 0.7 0.9998 0.9994 0.9981 0.9931 0.9717 0.8774 0.5315 0.0483 0.0000
0.95 59 0.9 0.9997 0.9992 0.9975 0.9911 0.9651 0.8575 0.5000 0.0474 0.0000
0.95 42 1 0.9997 0.9991 0.9970 0.9894 0.9595 0.8408 0.4732 0.0442 0.0000
0.95 13 1.5 0.9990 0.9973 0.9918 0.9741 0.9150 0.7346 0.3521 0.0392 0.0002
0.95 7 2 0.9965 0.9909 0.9756 0.9329 0.8208 0.5777 0.2415 0.0402 0.0034
0.95 5 2.5 0.9878 0.9714 0.9325 0.8449 0.6720 0.4128 0.1693 0.0492 0.0189
0.99 185 0.7 0.9996 0.9988 0.9961 0.9860 0.9454 0.7857 0.3439 0.0097 0.0000
0.99 76 0.9 0.9995 0.9984 0.9949 0.9823 0.9340 0.7569 0.3154 0.0098 0.0000
0.99 54 1 0.9993 0.9981 0.9939 0.9791 0.9242 0.7327 0.2907 0.0090 0.0000
0.99 17 1.5 0.9979 0.9942 0.9830 0.9483 0.8427 0.5734 0.1752 0.0066 0.0000
0.99 9 2 0.9929 0.9820 0.9532 0.8782 0.7034 0.3972 0.1050 0.0079 0.0002
0.99 7 2.5 0.9701 0.9329 0.8519 0.6931 0.4439 0.1835 0.0402 0.0054 0.0012

Table 4. Minimum sample sizes required to prove that the 10th percentile exceeds the values provided, t00.1,

with the probability P ∗ and different acceptance numbers c1, c2 using the bivariate Poisson approximation.

P* c1, c2
t/t00.1

0.7 0.9 1 1.5 2 2.5 3 3.5 4
0.75 1,2 73 30 21 7 4 3 3 3 3
0.75 2,3 108 45 32 10 6 4 4 4 4
0.75 3,4 143 59 42 13 7 5 5 5 5
0.9 1,2 100 41 29 9 5 4 4 3 3
0.9 2,3 140 58 41 13 7 5 5 5 5
0.9 3,4 179 74 52 16 9 7 6 6 6
0.95 1,2 118 65 46 14 8 6 5 5 5
0.95 2,3 161 67 47 15 8 6 5 5 5
0.95 3,4 203 84 59 18 10 8 7 6 6
0.99 1,2 158 65 46 14 8 6 5 5 5
0.99 2,3 207 85 60 19 10 8 7 7 6
0.99 3,4 253 104 73 23 12 9 8 8 8
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Table 5. Lot acceptance ratio d0.1 for the ERD with a 0.05 producer’s risk.

P ∗ c1, c2
t/t0.1

0.7 0.9 1 1.5 2 2.5 3 3.5 4
0.75 1,2 1.6277 1.6584 1.6759 1.8583 2.1055 2.4103 2.8882 3.3787 3.8614
0.75 2,3 1.4556 1.4847 1.5047 1.6269 1.8558 2.0362 2.4430 2.8511 3.2584
0.75 3,4 1.3709 1.3923 1.4099 1.5109 1.6532 1.8382 2.2058 2.5735 2.9411
0.9 1,2 1.7643 1.7995 1.8250 1.9933 2.2478 2.6339 3.1600 3.3744 3.8565
0.9 2,3 1.5578 1.5890 1.6093 1.7552 1.9468 2.1870 2.6245 3.0652 3.5031
0.9 3,4 1.4560 1.4799 1.4948 1.6073 1.7979 2.0665 2.3531 2.7453 3.1375
0.95 1,2 1.8401 1.8842 1.9023 2.1054 2.3664 2.8124 3.1607 3.6867 4.2134
0.95 2,3 1.6162 1.6523 1.6702 1.8283 2.0289 2.3161 2.6244 3.0619 3.4993
0.95 3,4 1.5046 1.5310 1.5470 1.6640 1.8552 2.1580 2.4766 2.7453 3.1375
0.99 1,2 1.9808 2.0257 2.0622 2.2535 2.5737 2.9642 3.3749 3.9364 4.4988
0.99 2,3 1.7237 1.7582 1.7822 1.9547 2.1665 2.5366 2.9203 3.4070 3.7058
0.99 3,4 1.5926 1.6227 1.6383 1.7862 1.9659 2.2474 2.5969 3.0297 3.4625

Table 6. OC values based on sampling plan (n, c1 = 1, c2 = 2, t/t0.1) with provided P ∗ using ERD.

P* n t/t00.1
t0.1/t

0
0.1

2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75
0.75 73 0.7 0.9991 0.9981 0.9956 0.9892 0.9705 0.9108 0.7136 0.2444 0.0014
0.75 30 0.9 0.9989 0.9977 0.9947 0.9872 0.9658 0.9001 0.6958 0.2447 0.0030
0.75 21 1 0.9987 0.9974 0.9942 0.9860 0.9630 0.8940 0.6865 0.2466 0.0045
0.75 7 1.5 0.9969 0.9937 0.9865 0.9693 0.9260 0.8154 0.5626 0.1943 0.0147
0.75 4 2 0.9916 0.9837 0.9671 0.9310 0.8526 0.6931 0.4317 0.1672 0.0447
0.75 3 2.5 0.9780 0.9596 0.9243 0.8571 0.7363 0.5481 0.3274 0.1622 0.0942
0.9 100 0.7 0.9983 0.9964 0.9919 0.9801 0.9466 0.8449 0.5540 0.0971 0.0000
0.9 41 0.9 0.9979 0.9957 0.9903 0.9766 0.9387 0.8281 0.5321 0.0982 0.0001
0.9 29 1 0.9976 0.9951 0.9891 0.9739 0.9325 0.8150 0.5140 0.0957 0.0002
0.9 9 1.5 0.9949 0.9897 0.9781 0.9507 0.8838 0.7239 0.4115 0.0871 0.0023
0.9 5 2 0.9870 0.9750 0.9499 0.8967 0.7861 0.5797 0.2943 0.0787 0.0132
0.9 4 2.5 0.9619 0.9310 0.8734 0.7694 0.5990 0.3731 0.1672 0.0577 0.0257
0.95 118 0.7 0.9976 0.9950 0.9888 0.9726 0.9275 0.7955 0.4552 0.0494 0.0000
0.95 49 0.9 0.9970 0.9938 0.9863 0.9671 0.9151 0.7697 0.4240 0.0472 0.0000
0.95 34 1 0.9968 0.9933 0.9851 0.9647 0.9099 0.7605 0.4168 0.0499 0.0000
0.95 11 1.5 0.9924 0.9848 0.9679 0.9286 0.8356 0.6294 0.2883 0.0363 0.0003
0.95 6 2 0.9815 0.9646 0.9298 0.8578 0.7150 0.4729 0.1923 0.0349 0.0036
0.95 5 2.5 0.9422 0.8967 0.8147 0.6753 0.4694 0.2396 0.0787 0.0185 0.0063
0.99 158 0.7 0.9958 0.9911 0.9802 0.9525 0.8777 0.6779 0.2761 0.0097 0.0000
0.99 65 0.9 0.9948 0.9893 0.9763 0.9441 0.8600 0.6468 0.2522 0.0096 0.0000
0.99 46 1 0.9941 0.9879 0.9734 0.9378 0.8467 0.6240 0.2347 0.0092 0.0000
0.99 14 1.5 0.9879 0.9758 0.9494 0.8897 0.7560 0.4933 0.1585 0.0088 0.0000
0.99 8 2 0.9680 0.9393 0.8822 0.7704 0.5712 0.2957 0.0745 0.0060 0.0002
0.99 6 2.5 0.9192 0.8578 0.7512 0.5812 0.3565 0.1469 0.0349 0.0055 0.0014
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Table 7. OC values based on sampling plan (n, c1 = 2, c2 = 3, t/t0.1) with provided P ∗ using ERD.

P* n t/t00.1
t0.1/t

0
0.1

2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75
0.75 108 0.7 1.0000 0.9999 0.9996 0.9983 0.9927 0.9630 0.8003 0.2464 0.0002
0.75 45 0.9 0.9999 0.9998 0.9994 0.9978 0.9906 0.9547 0.7758 0.2373 0.0005
0.75 32 1 0.9999 0.9998 0.9993 0.9973 0.9889 0.9486 0.7583 0.2289 0.0008
0.75 10 1.5 0.9998 0.9993 0.9979 0.9930 0.9743 0.9022 0.6594 0.2077 0.0081
0.75 6 2 0.9988 0.9968 0.9911 0.9736 0.9205 0.7731 0.4691 0.1464 0.0252
0.75 4 2.5 0.9965 0.9913 0.9779 0.9435 0.8597 0.6863 0.4301 0.2104 0.1167
0.9 140 0.7 0.9999 0.9997 0.9991 0.9965 0.9850 0.9279 0.6626 0.0985 0.0000
0.9 58 0.9 0.9999 0.9996 0.9988 0.9954 0.9810 0.9140 0.6314 0.0954 0.0000
0.9 41 1 0.9998 0.9995 0.9985 0.9946 0.9782 0.9044 0.6113 0.0927 0.0000
0.9 13 1.5 0.9995 0.9986 0.9956 0.9854 0.9488 0.8202 0.4731 0.0748 0.0006
0.9 7 2 0.9981 0.9951 0.9863 0.9603 0.8845 0.6904 0.3499 0.0766 0.0083
0.9 5 2.5 0.9934 0.9839 0.9601 0.9015 0.7704 0.5356 0.2614 0.0913 0.0393
0.95 161 0.7 0.9999 0.9996 0.9986 0.9948 0.9780 0.8983 0.5683 0.0500 0.0000
0.95 67 0.9 0.9998 0.9994 0.9981 0.9931 0.9720 0.8783 0.5297 0.0469 0.0000
0.95 47 1 0.9998 0.9993 0.9978 0.9921 0.9686 0.8677 0.5130 0.0472 0.0000
0.95 15 1.5 0.9992 0.9978 0.9934 0.9785 0.9265 0.7558 0.3624 0.0348 0.0001
0.95 8 2 0.9973 0.9928 0.9803 0.9439 0.8425 0.6047 0.2515 0.0379 0.0025
0.95 6 2.5 0.9889 0.9736 0.9362 0.8488 0.6699 0.3961 0.1464 0.0357 0.0118
0.99 207 0.7 0.9997 0.9991 0.9971 0.9895 0.9572 0.8181 0.3774 0.0096 0.0000
0.99 85 0.9 0.9996 0.9989 0.9963 0.9867 0.9478 0.7918 0.3471 0.0097 0.0000
0.99 60 1 0.9995 0.9986 0.9956 0.9845 0.9407 0.7725 0.3254 0.0094 0.0000
0.99 19 1.5 0.9985 0.9957 0.9873 0.9597 0.8697 0.6155 0.1941 0.0065 0.0000
0.99 10 2 0.9949 0.9867 0.9642 0.9022 0.7451 0.4394 0.1184 0.0082 0.0002
0.99 8 2.5 0.9757 0.9439 0.8713 0.7200 0.4666 0.1893 0.0379 0.0043 0.0008

Table 8. OC values based on sampling plan (n, c1 = 3, c2 = 4, t/t0.1) with provided P ∗ using ERD.

P* n t/t00.1
t0.1/t

0
0.1

2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75
0.75 143 0.7 1.0000 1.0000 1.0000 0.9997 0.9981 0.9841 0.8575 0.2465 0.0000
0.75 59 0.9 1.0000 1.0000 0.9999 0.9996 0.9974 0.9800 0.8391 0.2439 0.0001
0.75 42 1 1.0000 1.0000 0.9999 0.9995 0.9968 0.9763 0.8221 0.2332 0.0002
0.75 13 1.5 1.0000 0.9999 0.9997 0.9983 0.9908 0.9467 0.7296 0.2159 0.0045
0.75 7 2 0.9999 0.9996 0.9985 0.9935 0.9715 0.8821 0.6135 0.2197 0.0390
0.75 5 2.5 0.9994 0.9981 0.9934 0.9772 0.9242 0.7796 0.5123 0.2497 0.1334
0.9 179 0.7 1.0000 1.0000 0.9999 0.9994 0.9957 0.9661 0.7434 0.0995 0.0000
0.9 74 0.9 1.0000 1.0000 0.9998 0.9991 0.9942 0.9576 0.7134 0.0969 0.0000
0.9 52 1 1.0000 1.0000 0.9998 0.9989 0.9932 0.9522 0.6969 0.0967 0.0000
0.9 16 1.5 1.0000 0.9998 0.9993 0.9964 0.9810 0.8994 0.5738 0.0889 0.0004
0.9 9 2 0.9997 0.9990 0.9961 0.9842 0.9360 0.7675 0.3937 0.0724 0.0052
0.9 7 2.5 0.9979 0.9935 0.9788 0.9322 0.8023 0.5344 0.2197 0.0554 0.0179
0.95 203 0.7 1.0000 1.0000 0.9998 0.9990 0.9932 0.9491 0.6565 0.0498 0.0000
0.95 84 0.9 1.0000 0.9999 0.9997 0.9986 0.9909 0.9366 0.6200 0.0479 0.0000
0.95 59 1 1.0000 0.9999 0.9997 0.9983 0.9893 0.9289 0.6009 0.0479 0.0000
0.95 18 1.5 0.9999 0.9997 0.9989 0.9945 0.9718 0.8588 0.4707 0.0455 0.0000
0.95 10 2 0.9996 0.9985 0.9943 0.9774 0.9116 0.7003 0.3004 0.0385 0.0017
0.95 8 2.5 0.9967 0.9895 0.9668 0.8985 0.7240 0.4149 0.1298 0.0228 0.0056
0.99 253 0.7 1.0000 0.9999 0.9996 0.9977 0.9853 0.8999 0.4717 0.0098 0.0000
0.99 104 0.9 1.0000 0.9999 0.9994 0.9969 0.9809 0.8797 0.4352 0.0099 0.0000
0.99 73 1 1.0000 0.9999 0.9993 0.9962 0.9778 0.8666 0.4144 0.0099 0.0000
0.99 23 1.5 0.9998 0.9993 0.9972 0.9869 0.9378 0.7324 0.2549 0.0069 0.0000
0.99 12 2 0.9992 0.9971 0.9892 0.9587 0.8504 0.5582 0.1609 0.0096 0.0002
0.99 9 2.5 0.9949 0.9842 0.9514 0.8577 0.6396 0.3100 0.0724 0.0088 0.0016
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Figure 1. (a) OC curve for the sampling plan (n, c1, c2, tt0q) = (11,2,2,1.5). (b) OC curve for the sampling
plan (n, c1, c2, tt0q) = (9,1,2,1.5). (c) OC curve for the sampling plan (n, c1, c2, tt0q) = (13,2,3,1.5). (d) OC curve

for the sampling plan (n, c1, c2, tt0q) = (16,3,4,1.5).

6. Conclusion

The acceptance sampling plans discussed in this article are based on the Exponenti-
ated Rayleigh distribution where the life test is terminated at a predetermined time.
The method for building the suggested sampling plans using the bivariate Poisson ap-
proximation to calculate the percentiles of the ERD is given. The suggested sampling
plans are created by computing the operational characteristic value and minimum
sample size that fulfil the risks associated with the producer and customer, respec-
tively. For the ERD, the actual 10th percentile life for the accepted lot also resulted in
the values of c1, c2, t/t

0
0.1 and P ∗. Use of the acceptance sampling plans that depend on

percentiles is necessary to guarantee if their quality of the items exceeds a particular
one on the basis of life percentile. A few helpful tables are included to help create an
acceptability sampling plan using a one-shot syringe as an example.
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